Gongcheng Kexue Yu Jishu/Advanced Engineering Science

Gongcheng Kexue Yu Jishu/Advanced Engineering Science (ISSN: 2096-3246) is a bi-monthly peer-reviewed international Journal. Gongcheng Kexue Yu Jishu/Advanced Engineering Science was originally formed in 1969 and the journal came under scopus by 2017 to now. The journal is published by editorial department of Journal of Sichuan University. We publish every scope of engineering, Mathematics, physics.

Submission Deadline
( Vol 55 , Issue 03 )
20 Mar 2023
Day
Hour
Min
Sec
Publish On
( Vol 55 , Issue 03 )
31 Mar 2023
Scopus Indexed (2022)

Aim and Scope

Gongcheng Kexue Yu Jishu/Advanced Engineering Science (ISSN: 20963246) is a peer-reviewed journal. The journal covers all sort of engineering topic as well as mathematics and physics. the journal's scopes are in the following fields but not limited to:

Agricultural science and engineering Section:

Horticulture, Agriculture, Soil Science, Agronomy, Biology, Economics, Biotechnology, Agricultural chemistry, Soil, development in plants, aromatic plants, subtropical fruits, Green house construction, Growth, Horticultural therapy, Entomology, Medicinal, Weed management in horticultural crops, plant Analysis, Tropical, Food Engineering, Venereal diseases, nutrient management, vegetables, Ophthalmology, Otorhinolaryngology, Internal Medicine, General Surgery, Soil fertility, Plant pathology, Temperate vegetables, Psychiatry, Radiology, Pulmonary Medicine, Dermatology, Organic farming, Production technology of fruits, Apiculture, Plant breeding, Molecular breeding, Recombinant technology, Plant tissue culture, Ornamental horticulture, Nursery techniques, Seed Technology, plantation crops, Food science and processing, cropping system, Agricultural Microbiology, environmental technology, Microbial, Soil and climatic factors, Crop physiology, Plant breeding,

Electrical Engineering and Telecommunication Section:

Electrical Engineering, Telecommunication Engineering, Electro-mechanical System Engineering, Biological Biosystem Engineering, Integrated Engineering, Electronic Engineering, Hardware-software co-design and interfacing, Semiconductor chip, Peripheral equipments, Nanotechnology, Advanced control theories and applications, Machine design and optimization , Turbines micro-turbines, FACTS devices , Insulation systems , Power quality , High voltage engineering, Electrical actuators , Energy optimization , Electric drives , Electrical machines, HVDC transmission, Power electronics.

Computer Science Section :

Software Engineering, Data Security , Computer Vision , Image Processing, Cryptography, Computer Networking, Database system and Management, Data mining, Big Data, Robotics , Parallel and distributed processing , Artificial Intelligence , Natural language processing , Neural Networking, Distributed Systems , Fuzzy logic, Advance programming, Machine learning, Internet & the Web, Information Technology , Computer architecture, Virtual vision and virtual simulations, Operating systems, Cryptosystems and data compression, Security and privacy, Algorithms, Sensors and ad-hoc networks, Graph theory, Pattern/image recognition, Neural networks.

Civil and architectural engineering :

Architectural Drawing, Architectural Style, Architectural Theory, Biomechanics, Building Materials, Coastal Engineering, Construction Engineering, Control Engineering, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Materials Engineering, Municipal Or Urban Engineering, Organic Architecture, Sociology of Architecture, Structural Engineering, Surveying, Transportation Engineering.

Mechanical and Materials Engineering :

kinematics and dynamics of rigid bodies, theory of machines and mechanisms, vibration and balancing of machine parts, stability of mechanical systems, mechanics of continuum, strength of materials, fatigue of materials, hydromechanics, aerodynamics, thermodynamics, heat transfer, thermo fluids, nanofluids, energy systems, renewable and alternative energy, engine, fuels, nanomaterial, material synthesis and characterization, principles of the micro-macro transition, elastic behavior, plastic behavior, high-temperature creep, fatigue, fracture, metals, polymers, ceramics, intermetallics. Azerbaijan Medical Journal Zhonghua er bi yan hou tou jing wai ke za zhi = Chinese journal of otorhinolaryngology head and neck surgery Interventional Pulmonology Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering) Zhonghua yi shi za zhi (Beijing, China : 1980) Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science) Tobacco Science and Technology Teikyo Medical Journal Connected Health

Chemical Engineering :

Chemical engineering fundamentals, Physical, Theoretical and Computational Chemistry, Chemical engineering educational challenges and development, Chemical reaction engineering, Chemical engineering equipment design and process design, Thermodynamics, Catalysis & reaction engineering, Particulate systems, Rheology, Multifase flows, Interfacial & colloidal phenomena, Transport phenomena in porous/granular media, Membranes and membrane science, Crystallization, distillation, absorption and extraction, Ionic liquids/electrolyte solutions.

Food Engineering :

Physics Section:

Mathematics Section:

Actuarial science, Algebra, Algebraic geometry, Analysis and advanced calculus, Approximation theory, Boundry layer theory, Calculus of variations, Combinatorics, Complex analysis, Continuum mechanics, Cryptography, Demography, Differential equations, Differential geometry, Dynamical systems, Econometrics, Fluid mechanics, Functional analysis, Game theory, General topology, Geometry, Graph theory, Group theory, Industrial mathematics, Information theory, Integral transforms and integral equations, Lie algebras, Logic, Magnetohydrodynamics, Mathematical analysis.
Latest Journals
Gongcheng Kexue Yu Jishu/Advanced Engineering Science
Journal ID : AES-16-10-2021-62

Abstract :

The stress state of the cable is related to the safety of the cable system bridge, and the cable force value is an important index to measure the mechanical states of the cable. At present, the difficulty of determining the cable boundary conditions is an important factor affecting the accuracy of the cable force identification results. The ANSYS was used to numerically simulate the cable vibration, and the reliability of the modeling method was verified by the existing cable force calculation formula and the simulation data was generated. Then taken cable length, line density, bending stiffness, first-order frequency, second-order frequency, and third-order frequency as the input parameters, and used cable force as output parameter combined with vibration simulation data to establish BP neural network and generalized regression neural network cable force prediction model. Two neural network cable force prediction models and the existing cable force calculation formula were applied to actual projects for comparison and verification. The results showed that the neural network structure of the BP neural network cable force prediction model was 6–13–13–1, the activation functions between the input layer and the hidden layer 1, the hidden layer 1 and the hidden layer 2, the hidden layer 2 and the output layer were tansig, tansig, purelin, the training algorithm was the L–M optimization algorithm trainlm, the learning rate was 0.1, the number of network iterations was 1 000, the display interval was 100, the mean square error was 0.001, the prediction effect of the cable force prediction model was good, but there was room for further optimization. The best spread value of the generalized regression neural network cable force prediction model was 0.002 15, the prediction effect of the cable force prediction model was better than that of the BP neural network and the existing cable force calculation formula, and the forecast error was basically controlled within 5%. Utilizing the generalized regression neural network to predict the cable force of the bridge can avoid the influence of the judgment error of the cable boundary condition on the accuracy of the cable force recognition result, and improve the accuracy of the cable force recognition, which has a good engineering application value.

.
Full article
Gongcheng Kexue Yu Jishu/Advanced Engineering Science
Journal ID : AES-16-10-2021-61

Abstract :

Surface roughness of structures is a primary factor that affects the mechanical properties of soil-structure interface. To further study the effect of roughness on shear strength of interface, large-scale direct shear tests were performed on clay-concrete interface under different roughness conditions and the influence mechanism of roughness on peak shear strength of interface was revealed. The results showed that the shear stress-displacement curves of clay-concrete interface exhibited strain-softening under different roughness conditions, and the greater roughness, the more obvious peak point of curve. Increasing roughness could obviously increase the peak shear strength of interface and there existed a critical roughness in terms of its influence on peak shear strength of interface. Morphological characteristics of the shear failure plane of different rough interfaces indicated that the smooth interface mainly occurred shear slip failure during the shearing process, and the friction and occlusion between clay particles and concrete were strengthened with increasing roughness, which resulted in the internal shear failure of clay. The shear strength of interface can be approximately divided into two parts: the shear strength of smooth interface and the shear strength of soil in rough parts. A new peak shear strength model of interface considering roughness was established by introducing a roughness-related coefficient into Jewell’s model and proposing a function to describe the relationship between the coefficient and roughness. Finally, comparison results between calculated value and test value showed that maximum relative error was 11.01% and mean relative error was 4.74%, which verified the accuracy and rationality of the proposed model.

.
Full article
Gongcheng Kexue Yu Jishu/Advanced Engineering Science
Journal ID : AES-16-10-2021-60

Abstract :

In order to improve the denitration performance of La-Mn perovskite catalyst, a series of Ce modified perovskite La-Mn composite oxide catalysts were synthesized by citric acid sol-gel method. The structure, morphology, composition and surface physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), N2 adsorption-desorption (BET) and temperature programmed technology (H2-TPR/NH3-TPD).The results of the activity test showed that the denitration performance of Ce modified perovskite type La-Mn composite oxide catalysts are improved. When the Ce/Mn molar ratio is 0.2, the catalyst has the best denitration activity. The NOx conversion rate could reach 90% at 135 ℃, and maintaining more than 90% NOx conversion in the temperature window range of 135~260℃. XRD results showed that the perovskite type La-Mn composite oxide modified by Ce has porous structure and could maintain the perovskite structure of LaMnO3.15. However, Ce ions do not completely enter the perovskite structure, and some of them cover the catalyst surface in the form of oxides. At the same time, part of Mn ions in the lattice overflow from the perovskite structure in the form of Mn3O4, thus maintaining the structural stability and charge balance. SEM and BET results showed that the specific surface area of the catalyst increases and more active sites are provided after the introduction of Ce, which promotes the denitration reaction. XPS results showed that Ce modified catalyst produces more Mn4+ and chemically adsorbed oxygen, which promotes the oxidation of NO. The results of temperature programmed technology showed that the catalyst modified by Ce has better redox performance and more acidic sites, which is conducive to the denitration reaction. Therefore, Ce modified La-Mn composite oxide could improve the denitration performance by promoting NO oxidation and NH3 adsorption.

.
Full article
Gongcheng Kexue Yu Jishu/Advanced Engineering Science
Journal ID : AES-16-10-2021-59

Abstract :

Gas-containing coal is a two-phase dielectric composite material with porous characteristics and solid-gas coupling characteristics. In order to accurately simulate the physical and mechanical properties of gas-containing coal, based on similarity criteria and similarity scales of main control parameters, with more than 80 sets of material matching tests and mechanical parameter tests, a similar material for coal-gas two-phase medium was developed. The similarity between similar materials and raw coal was compared, and based on the new material, a three-dimensional simulation test of coal and gas outburst was performed. The main conclusions were as follows. 1) The elastoplastic parameters and adsorption parameters of new material prepared by pulverized coal and sodium humate aqueous solution as aggregate and binder is similar to raw coal. Similar materials with different elastic-plastic parameters can be prepared by adjusting the material ratio. The adsorption of similar materials is consistent with that of raw coal. 2) The expansion energy of the binary mixture of CO2 and N2 is between CO2 and N2. The proportional coefficient of expansion energy and CO2 volume fraction are quadratic functions. The expansion energy of the mixture with 45% CO2 volume fraction is consistent with that of CH4. The binary mixture of CO2 and N2 can be used as similar gas to CH4, and it is safer than CH4. 3) The new material is highly similar to the physical and mechanical parameters of raw coal containing gas, which realizes the simulation of gas-solid coupling characteristics. 4) A three-dimensional physical simulation experiment reproduces the phenomenon of outburst caused by uncovering coal, and the morphology of outburst holes and the quality of outburst pulverized coal that are close to the field are obtained, which verifies the rationality of similar materials, and also provides a scientific means for further study of the law of outburst and monitoring the precursor information of outburst.

.
Full article
Gongcheng Kexue Yu Jishu/Advanced Engineering Science
Journal ID : AES-16-10-2021-58

Abstract :

The macro mechanical properties of slope are determined by the meso parameters of soil particles and their motion. Although the stress and deformation characteristics of slope at the macro level can basically be obtained by the finite element method based on continuum model, it is difficult to reveal the deformation and instability mechanism of slope in the micro scale, and there are obvious limitations. The three-dimensional DEM-CFD model of fluid solid interaction of coal measure soil slope was established by coupling DEM and CFD. The meso mechanism of coal measures soil slope failure under rainfall was analyzed. The results show that the failure mode of coal measure soil slope simulated by DEM-CFD is mainly of rain erosion, and the slope sliding surface is predicted to be of approximate straight-line section, which is very close to the range of rain erosion of slope in outdoor model test. This shows that the numerical method is suitable to analyze the stability of coal measure soil slope. Micro parameters such as force chain, coordination number and porosity of soil particles in slope will change during the rainfall. For example, the porosity of particles on the top of slope changed from 0.35 in initial state to 0.8 in unstable state. The change of these micro parameters is directly related to the macro mechanical performance of the slope soil. In this paper, the law of the failure evolution of the coal measure soil slope under the rainfall was explained through the analysis of the micro parameters change of the particles. The research results of this paper not only provides theoretical basis for the protection design and construction of the coal measure soil slope in this area, but also provides a new way of analyzing the macro mechanical laws in geotechnical engineering from the micro perspective.

.
Full article