Gongcheng Kexue Yu Jishu/Advanced Engineering Science

Gongcheng Kexue Yu Jishu/Advanced Engineering Science (ISSN: 2096-3246) is a bi-monthly peer-reviewed international Journal. Gongcheng Kexue Yu Jishu/Advanced Engineering Science was originally formed in 1969 and the journal came under scopus by 2017 to now. The journal is published by editorial department of Journal of Sichuan University. We publish every scope of engineering, Mathematics, physics.


Submission Deadline
( Vol 56 , Issue 01 )
25 Feb 2024
Day
Hour
Min
Sec
Publish On
( Vol 56 , Issue 01 )
29 Feb 2024
Scopus Indexed (2024)

Aim and Scope

Gongcheng Kexue Yu Jishu/Advanced Engineering Science (ISSN: 20963246) is a peer-reviewed journal. The journal covers all sort of engineering topic as well as mathematics and physics. the journal's scopes are in the following fields but not limited to:

Agricultural science and engineering Section:

Horticulture, Agriculture, Soil Science, Agronomy, Biology, Economics, Biotechnology, Agricultural chemistry, Soil, development in plants, aromatic plants, subtropical fruits, Green house construction, Growth, Horticultural therapy, Entomology, Medicinal, Weed management in horticultural crops, plant Analysis, Tropical, Food Engineering, Venereal diseases, nutrient management, vegetables, Ophthalmology, Otorhinolaryngology, Internal Medicine, General Surgery, Soil fertility, Plant pathology, Temperate vegetables, Psychiatry, Radiology, Pulmonary Medicine, Dermatology, Organic farming, Production technology of fruits, Apiculture, Plant breeding, Molecular breeding, Recombinant technology, Plant tissue culture, Ornamental horticulture, Nursery techniques, Seed Technology, plantation crops, Food science and processing, cropping system, Agricultural Microbiology, environmental technology, Microbial, Soil and climatic factors, Crop physiology, Plant breeding,

Electrical Engineering and Telecommunication Section:

Electrical Engineering, Telecommunication Engineering, Electro-mechanical System Engineering, Biological Biosystem Engineering, Integrated Engineering, Electronic Engineering, Hardware-software co-design and interfacing, Semiconductor chip, Peripheral equipments, Nanotechnology, Advanced control theories and applications, Machine design and optimization , Turbines micro-turbines, FACTS devices , Insulation systems , Power quality , High voltage engineering, Electrical actuators , Energy optimization , Electric drives , Electrical machines, HVDC transmission, Power electronics.

Computer Science Section :

Software Engineering, Data Security , Computer Vision , Image Processing, Cryptography, Computer Networking, Database system and Management, Data mining, Big Data, Robotics , Parallel and distributed processing , Artificial Intelligence , Natural language processing , Neural Networking, Distributed Systems , Fuzzy logic, Advance programming, Machine learning, Internet & the Web, Information Technology , Computer architecture, Virtual vision and virtual simulations, Operating systems, Cryptosystems and data compression, Security and privacy, Algorithms, Sensors and ad-hoc networks, Graph theory, Pattern/image recognition, Neural networks.

Civil and architectural engineering :

Architectural Drawing, Architectural Style, Architectural Theory, Biomechanics, Building Materials, Coastal Engineering, Construction Engineering, Control Engineering, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Materials Engineering, Municipal Or Urban Engineering, Organic Architecture, Sociology of Architecture, Structural Engineering, Surveying, Transportation Engineering.

Mechanical and Materials Engineering :

kinematics and dynamics of rigid bodies, theory of machines and mechanisms, vibration and balancing of machine parts, stability of mechanical systems, mechanics of continuum, strength of materials, fatigue of materials, hydromechanics, aerodynamics, thermodynamics, heat transfer, thermo fluids, nanofluids, energy systems, renewable and alternative energy, engine, fuels, nanomaterial, material synthesis and characterization, principles of the micro-macro transition, elastic behavior, plastic behavior, high-temperature creep, fatigue, fracture, metals, polymers, ceramics, intermetallics.

Chemical Engineering :

Chemical engineering fundamentals, Physical, Theoretical and Computational Chemistry, Chemical engineering educational challenges and development, Chemical reaction engineering, Chemical engineering equipment design and process design, Thermodynamics, Catalysis & reaction engineering, Particulate systems, Rheology, Multifase flows, Interfacial & colloidal phenomena, Transport phenomena in porous/granular media, Membranes and membrane science, Crystallization, distillation, absorption and extraction, Ionic liquids/electrolyte solutions.

Food Engineering :

Physics Section:

Astrophysics, Atomic and molecular physics, Biophysics, Chemical physics, Civil engineering, Cluster physics, Computational physics, Condensed matter, Cosmology, Device physics, Fluid dynamics, Geophysics, High energy particle physics, Laser, Mechanical engineering, Medical physics, Nanotechnology, Nonlinear science, Nuclear physics, Optics, Photonics, Plasma and fluid physics, Quantum physics, Robotics, Soft matter and polymers.

Mathematics Section:

Actuarial science, Algebra, Algebraic geometry, Analysis and advanced calculus, Approximation theory, Boundry layer theory, Calculus of variations, Combinatorics, Complex analysis, Continuum mechanics, Cryptography, Demography, Differential equations, Differential geometry, Dynamical systems, Econometrics, Fluid mechanics, Functional analysis, Game theory, General topology, Geometry, Graph theory, Group theory, Industrial mathematics, Information theory, Integral transforms and integral equations, Lie algebras, Logic, Magnetohydrodynamics, Mathematical analysis.
Latest Journals
Gongcheng Kexue Yu Jishu/Advanced Engineering Science
Journal ID : AES-14-11-2021-88

Abstract :

Onshore ground motions were widely used for seismic analysis of sea-crossing bridges, and the difference between the onshore and offshore ground motions were ignored. Due to soil loss around piles scoured by water for a long time, the stability of substructure of bridge in marine environment was reduced. Taking an approach part of a sea-crossing bridge as an example, a finite element model for this approach part was built by using the ABAQUS software. The pile-soil effect and hydro dynamic force were considered in the model. The probabilistic seismic demand analysis method was used with the fragility analysis of bridge piers under onshore and offshore ground motions with different scour conditions. By drawing the transcendence probability vulnerability curves and the transcendence probability increase diagrams of piers and bearings, the damage regularities of bridges under the onshore and offshore ground motions and different scour depths of bridges key components were studied. The results showed that the bridge piers were more vulnerable under offshore motions than that under onshore motions. With the increase of the local soil scour depth, the failure probability of the bridge piers and bearings increased. The effect of scour depth had a more obvious effect on the failure exceeding probability of the piers. The failure exceeding probability of the piers in bridge longitudinal direction was higher than that in bridge transverse direction under the same intensity of ground motion. The bearings were more vulnerable than bridge piers under the same working conditions. The increase of failure exceeding probability of the bearings under the offshore motions was also generally higher than that under the onshore. As the scour depth increased, the failure exceeding probability of the bearing gradually increased. Comparing with the onshore motions, the scour depth had a more obvious influence on the failure exceeding probability of bridge piers under the offshore motions with the increase of the ground motion intensity.

.
Full article
Gongcheng Kexue Yu Jishu/Advanced Engineering Science
Journal ID : AES-14-11-2021-87

Abstract :

As the basic part of motion of humanoid robots, human-like motion planning of the anthropomorphic arm is always one of the research hotspots and difficulties. A novel human-like motion planning method based on movement primitives was proposed. This method can satisfy the feature of arm motion and improve the accuracy. Firstly, the arm structure was decoupled and the arm model was built to express different arm movements. The methods of extraction and connection about movement primitives were established. The mapping relations between the arm models and inverse kinematic (IK) solutions were established. Meanwhile, a motion framework was proposed. The joint trajectories of a certain platform can be generated to accomplish required tasks with this motion framework. Secondly, according to the motion features of different movement primitives, the associated Human Performance Measures for different movement primitives were constructed to solve the IK problem. Finally, the proposed method was verified by the similarity experiment and the human-like movement experiment for the general motion of humanoid robot NAO. In the similarity experiment, the robot NAO generated the human-like movements with the proposed method. The motion data were compared with the real data generated by humans. All the errors were less than 1 cm, which satisfied the accuracy requirements of human-like movements. In the human-like movement experiment, the robot NAO performed a human-like arm movement with the proposed method. The proposed method was also compared with the minimum total potential energy method and the last norm algorithm. Using the proposed method, 7% and 58 % increase in similarity were achieved respectively, compared with those two methods. With the proposed method, the complex motion models were decoupled into different simple sub-movements and the classification of the movements reduced the calculation amount. The experiments proved that the anthropomorphic arm can generate human-like movements accurately.

.
Full article
Gongcheng Kexue Yu Jishu/Advanced Engineering Science
Journal ID : AES-14-11-2021-86

Abstract :

Industrial and agricultural activities lead to increasing soil cadmium (Cd) pollution. As an important functional component of soil colloid, both montmorillonite (Me) and humic acid (HA) have good adsorption properties for Cd. Four molecular weight grades of HA were obtained by tangential flow ultrafiltration. FTIR, element determination, functional group titration were used to study the effect of HA with different molecular weight on the adsorption of Cd on montmorillonite and the mechanism of action. The results showed that with the increase of molecular weight of HA, the content of hydroxyl and carboxyl groups decreased while the phenolic hydroxyl group and methyl group increased, the aromaticity increased, the hydrophobicity became stronger, and the pH value increased. The contents of Cd and HA adsorbed by montmorillonite in the ternary system increased with the increase of molecular weight. When the initial concentration of Cd was 50 mg/L, the adsorption capacity of HA, HA1, HA2, HA3, HA4 montmorillonite system for Cd was 1.99, 2.11, 2.46, 4.12, 4.88 mg/g, respectirely. And the Cd adsorbed under the action of each molecular weight HA was mainly reducible state. The smaller HA was easier to compete for the adsorption of the Cd already bound on the surface of montmorillonite, and due to its strong hydrophilicity, the Cd adsorbed by small HA would be brought into the solution, reducing the content of Cd absorbed by the system. With the increase of molecular weight, its competition effect with montmorillonite was reduced, and the HA was difficult to enter into the montmorillonite layers. At this time, under the hydrophobic effect, the large molecule HA adsorbed Cd would cover the surface of montmorillonite, thus increasing the adsorption amount of Cd in the system.

.
Full article
Gongcheng Kexue Yu Jishu/Advanced Engineering Science
Journal ID : AES-14-11-2021-85

Abstract :

The composite strengthening method with near surface mounted steel bars and wrapped fiber reinforced polymer strips can improve the bearing capacity and deformation behavior of timber columns effectively, and enhance their working performance greatly. To propose the load-bearing capacity formula of short timber columns strengthened with near surface mounted steel bars and wrapped carbon fiber reinforced polymer (CFRP) strips, a total of 42 reinforced specimens (12 groups) were tested under axial compression. The test results indicated that the failure of timber columns mainly occurred where the initial defects concentrated , and the bearing capacity and deformation performance of timber columns could be improved through the composite strengthening, showing significant strengthening effectiveness.Based on the typical strength model of concrete columns wrapped with fiber reinforced polymer strips, three strength models of timber columns with wrapped CFRP strips by analyzing and fitting the relevant experiment data were proposed. Through the comparison between theoretical and test values, the feasible strength model for the calculation of timber columns confined by CFRP strips was selected, and then the calculation formula of bearing capacity for the circular timber columns with composite reinforcement method was obtained. According to the additional experiment results and the comparison calculation for test data in existed research, it can be obtained that the theoretical calculation was able to predict the test results,which verified the reliability of the formula for the calculation of the strengthened timber columns' load-bearing capacity.

.
Full article
Gongcheng Kexue Yu Jishu/Advanced Engineering Science
Journal ID : AES-14-11-2021-84

Abstract :

A water–soil coupling model of channel fluid movement is established considering the interaction of gully bed erosion, slope confluence, and rainfall, which can provide theoretical basis for watershed risk assessment, disaster prevention and mitigation, and identification of potential debris flow gully. By analyzing the erosion process of the channel fluid on the movable solid source of the gully bed, and coupling it with the slope confluence and the rainfall over the channel with temporal and spatial variability, the water–soil coupling model of the channel fluid movement in the small watershed can be established. The finite difference method was used to discretize the water–soil coupling model of fluid movement in time and space. A computer code for the coupling model of fluid motion was written in MATLAB. Meanwhile, laboratory experiments were carried out with varying flow rates and groove slopes to observe the evolution of fluid flow depth, flow velocity and fluid bulk density under different working conditions. By analyzing the results of the 12 sets of experiments, it was found that under the condition that the slope of the groove remains unchanged, the fluid flow depth and the fluid velocity were positively correlated with the flow and the bulk density was negatively correlated with the flow. At the same time, the numerical simulation results of the fluid flow depth, flow velocity and fluid bulk density at the control point of the groove were compared to and analyzed with the experimental results. It was found that the simulation accuracy of the fluid flow velocity and fluid bulk density were higher than 90%, and the simulation accuracy of the fluid flow depth was higher than 80%. The results revealed that the established water–soil coupling model of the channel fluid movement in the small watershed is accurate.

.
Full article