Gongcheng Kexue Yu Jishu/Advanced Engineering Science (ISSN: 2096-3246) is a bi-monthly peer-reviewed international Journal. Gongcheng Kexue Yu Jishu/Advanced Engineering Science was originally formed in 1969 and the journal came under scopus by 2017 to now. The journal is published by editorial department of Journal of Sichuan University. We publish every scope of engineering, Mathematics, physics.
Gongcheng Kexue Yu Jishu/Advanced Engineering Science (ISSN: 20963246) is a peer-reviewed journal. The journal covers all sort of engineering topic as well as mathematics and physics. the journal's scopes are in the following fields but not limited to:
Incidents such as fires, explosions, and impacts may cause progressive collapse of building. Since the 20th century, as terrorist activities in the world have been increasing year by year, experts and scholars around the world have begun to pay attention to the formulation of building collapse prevention codes and structural progressive collapse resistance. At present, Concrete filled steel tube column (CFST)-steel beam joints with outer ring plate have been widely used in engineering examples. However, outer ring plates occupy a large amount of building space due to welding on the outer wall of steel tubes, which affect the function of buildings, and CFST-steel beam joints with through-center construct, that is, the steel beams are wholly or partially passed through the core concretes and the steel tubes, which greatly save the use space of the buildings. In order to study the mechanism of CFST-steel beam joints with through-center construct under progressive collapse conditions, ABAQUS finite element software was used to establish five CFST-steel beam joints with through-center construct and one fully welded joint models. The resistance mechanism, deformation modes and internal forces of the joint were investigated,and the capability of progressive collapse was evaluated. The results showed that the failure mode of CFST-steel beam joints with through-center construct can be divided into two types, the collapse failure mode at the beam and the collapse failure mode at the column. The collapse failure mode at the column has better ductility and bearing capacity, but with instability. The vertical bearing capacity of the joints is mainly provided by the bending mechanism and the catenary mechanism. The bending resistance mechanism provides the early resistance and the catenary mechanism determines the ultimate bearing capacity at the later stage. The new CFST column-steel beam joint with through-center structure has good capability of progressive collapse resistance, and its index of progressive collapse resistance of joint is higher than that of the other joints with collapse failure mode at the beam. |
In order to obtain a high gain, a Huygens' metasurface was proposed as the phase shift surface (PSS) for the resonant cavity antenna (RCA) to uniformize the field phase distribution over the RCA's aperture. The metasurface consists of two sets of split ring resonators (SRRs), which are parallel and perpendicular to the incident electromagnetic wave, respectively. The SRRs resonate with the magnetic and electric field of the incident wave, and thus the metasurface is able to manipulate the reflection and transmission of the incident wave. By configuring the dimensions of the SRRs independently, the magnetic and electric resonances can be adjusted respectively, and thereby a fast design of the PSS is achieved. To verify the proposed method, a PSS sample with an operating frequency of 5.8 GHz was designed and applied to a cylindrical RCA with a diameter of 180 mm. The RCA with the PSS was fabricated and the measurement agrees will with the simulation. The simulated and measured results demonstrated that the PSS had a phase shift range of 360° with a minimum transmission magnitude of 0.99 and the RCA with the PSS obtained a more uniform field phase distribution over the antenna's aperture. The RCA's gain was enhanced from 14.90 dB to 18.31 dB, and the aperture efficiency was enhanced from 25.9% to 56.7%. |
The DZ125 alloy has excellent mechanical, fatigue, and high-temperature behaviors. It has been widely used in high-temperature gas turbine components. Although a lot of researches have been carried out on the fatigue problem of the DZ125 alloy, there are still few systematical studies on the fatigue crack initiation mechanism and its failure mechanism during very high cycle fatigue (VHCF) by microscopic fracture analysis. It is found that the scatter of fatigue data increases as fatigue stress decreases, and the fatigue life does not increase significantly even at a low fatigue stress (<220 MPa). The above characteristics are directly related to the change of micro-crack initiation mechanism. Under a high fatigue stress, micro-crack tends to initiate from surface or sub-surface of specimen, and the large secondary crack is the main feature of its fracture morphology. At a low fatigue stress, micro-crack is likely to initiate from interior material defects, and the existence of these defects can seriously affect the fatigue life. Persistent slip bands (PSB) lead to the formation of rough surfaces, which is the main feature at the crack tip. The main crack competes with other secondary cracks and eventually causes fatigue fractures. The results of the Murakami equation show that the average stress intensity factor at micro-crack initiation stage is 3.15 MPa·m1/2, the average stress intensity factor at the onset of unstable crack propagation is 7.7 MPa·m1/2, and the average fracture toughness (KIC) is 15.70 MPa·m1/2.
.With the increase of hydropower units and installed capacity in China,the fault problem during the transient process occurs frequently.The signal analysis method is widely used to deal with the problem.The variational mode decomposition (VMD) method,a relatively new self-adaptive method for processing non-linear and non-stationary signals,was adopted to investigate the vibration signals during the transient process of a hydropower unit in the Gezhouba power plant.The first step was to use VMD to analyze the simulated vibration signals of the transient process,and to verify the effectiveness of the VMD method in dealing with non-linear and unstable signals.The Hilbert-Huang transform (HHT) was then used to calculate the instantaneous frequency of each intrinsic mode functions (IMF) decomposed by VMD to obtain the corresponding Hilbert spectrum.These results were compared with those from empirical mode decomposition (EMD) method.From the final vibration signal analysis,the IMF decomposed by VMD could be divided into three parts.The first part was the trend of signal development.The second part was the basic decomposition of the signal with a strong regularity of "spindle" signal reflecting the change law of the transient process.The third part was high-frequency characteristic signals mainly caused by interference noise or unit failure.The corresponding Hilbert spectrum had the characteristics of small fluctuation and stable amplitude.The results showed good consistency between the frequency change of each component and the time-dependent rule of the rotational speed.This suggested that VMD was capable of extracting characteristic frequencies to facilitate the analysis of vibration characteristics.Compared with EMD,the VMD outperformed in self-adaptivity.It provided more accurate and effective analysis results and a better representation of the vibration rule during the transient process of the hydropower unit.
.Rigid body guidance synthesis is a typical problem in mechanism design.In order to avoid the defects by traditional synthesis methods based on Burmester kinematic geometry theory,such as the limitation of mechanism structure type and the uncertainty of mechanism function,a generalized function oriented geometric synthesis method based on similarity transformation of the mechanism function modules was discussed.Since the standard mechanism modules were considered as basic design units for this method,the structure type of guidance mechanism modules need to be extended for a larger solution space,thereforethe geared linkage structure that can generate complex motion patterns was taken into account,aiming at the establishment of corresponding function module through kinematic analysis.At first,the transformation and mapping method between transmission function and guidance function were obtained through the configuration analysis of geared linkage,thus converting the transmission mechanism to the guidance mechanism through changing the rotation center of output gear.Secondly,the complex vector method was introduced for the kinematic analysis to obtain the guidance function,after that the geared linkage function module with full topology information was established,which included the transmission characteristics as well as the guidance characteristics,i.e. the relative dimensional parameters,the guidance angle performance, the guidance point trajectory and the motion geometric identifier.Then,in order to obtain the method for adjusting dimensional parameters of the preselected function module,a bidirectional mapping rule between relative dimensions and achievable guidance functions was revealed.At last,a practical guidance mechanism design task for powder production with partial parallel guidance function requirement was given, the similarity transformation of geometric identifier between geared linkage function module and the guidance task was presented, then the actual solution mechanism size and position parameters which meet the technical requirements were obtained. Finally the validity and practicability of the proposed generalized synthesis method were verified by the analysis of design results.
.