[This article belongs to Volume - 53, Issue - 06]
Gongcheng Kexue Yu Jishu/Advanced Engineering Science
Journal ID : AES-12-01-2022-109

Title : Analysis of Hysteresis Properties of Seismic Damaged Masonry Pagoda Restraint by Rigid Hoops
LU Junlong, XING Weiwei, WANG Zhenshan, SUN Chong,

Abstract :

Due to the weak integrity of the damaged masonry pagodas, it is easily to be destroyed heavily for the pagodas affected by earthquake again, even are collapsed. Using rigid hoops to restrain and strengthen the masonry can improve the mechanical properties of ancient masonry pagodas. To study the seismic performance of damaged masonry pagoda reinforced with rigid hoop, three sub-structure models of the masonry pagoda were designed and constructed, and the pseudo-static tests were carried out. The failure phenomena of seismic damaged specimens and the specimens restrained by angle steel hoops were observed, and the load-displacement curves of the restrained specimens were obtained. The numerical models were established to calculate the stress, strain and deformation of the ancient pagoda substructure, and the seismic performance indexes of the reinforced ancient pagoda substructure were obtained through comparative analysis with the test results. As results, the hoop device can effectively confine the horizontal deformation and the expansion of diagonal cracks, improve the ability of the ancient pagoda substructure to resist horizontal deformation, and delay the degradation of structural rigidity. The numerical model can reflect well to the damage of the structure and reinforcement device the characteristics of collaborative work with the structure of the pagoda, and the research results can provide references for the seismic reinforcement of ancient masonry pagoda.