[This article belongs to Volume - 52, Issue - 03]
Gongcheng Kexue Yu Jishu/Advanced Engineering Science
Journal ID : AES-16-10-2021-38
Total View : 1

Title : Preparation and Characterization of MnMnO2 Reference Electrode for Buried Concrete
Wang Penggang, W. Yuan, Guo Tengfei, Zhao Tiejun, Tian Li, Jin Zuquan, Wan Xiaomei, Wang Lanqin,

Abstract :

Chloride erosion is the most important factor affecting the corrosion of steel bars in the marine environment, salt lakes and saline soil areas. Therefore, timely and accurate grasp of the distribution of chloride ions inside reinforced concrete structures is of great significance to the durability evaluation, protection and repair of reinforced concrete structures under severe environmental conditions. In this paper, a solid Mn/MnO2 reference electrode for concrete with compact structure and stable performance is prepared by physical powder compaction method. The results show that the loading pressure is an important parameter that affects the strength and density of the Mn/MnO2 electrode prepared by the tablet method. When preparing Mn/MnO2 electrodes, the loading pressure needs to be controlled, and the recommended loading pressure is 96 MPa. The electrode must be activated before use. The response time of the activated Mn/MnO2 electrode is less than 60 s, and the stability, reproducibility and anti-polarization performance are good. When the Mn/MnO2 electrode works in the temperature range of 5~65 °C, the electrode potential is linearly related to the temperature. When the Mn/MnO2 electrode works in the pH range of 8.36~13.00, the electrode potential remains constant. Therefore, if the Mn/MnO2 electrode prepared by this method is used as the reference electrode of the chloride ion sensor to be buried in concrete, the temperature inside the concrete must be tested and corrected at the same time. Keywords: reference electrode; powder compaction method; performance characterization; influencing factors.