To investigate the anti-seismic resilience of inter-story substructure of PEC column-steel beam frame with partial self-centering friction damped connection, a specimen with 1∶2 scale was designed and fabricated, then two tests before and after renovation were conducted under cyclic lateral loading. Based on the test observations and measurements, the specimens’ anti-seismic behaviors such as the hysteretic characteristics, lateral stiffness, self-centering function and energy-dissipation capacity were studied. The results indicated that rational dimension of bolt slotted hole was designed to achieve the force-transfer mechanism of partial self-centering friction damped connection at design-earthquake level and bearing-type connection was formed at maximum considered earthquake level; the force-transfer mode of concrete equivalent strut was formed in the panel zone due to pre-tension penetrating bolts and pre-tensioned bars, and reinforced gusset plate was designed to confine concrete in the panel zone, correspondingly the anti-seismic requirements of strong joint were met when the inter-story drift arrived at the inter-story drift limit of frame structure at design-based earthquake level, self-centering functions were sound for residual drifts of inter-story were 0.11% and 0.13%, respectively, while the inter-story drift surpassed the inter-story drift limit of frame structure at maximum considered earthquake level, self-centering functions were still good for residual drifts of inter-story were 0.42% and 0.44%, respectively; with simple repairmen, the force-transfer developing process, lateral stiffness, self-centering function and evolution mechanism of energy dissipation were restored, hence the specimen owned superior anti-seismic resilience.